
 1

Formal Methods for Autonomic and Swarm-based Systems

Christopher Rouff
Amy Vanderbilt

SAIC
703-676-6184

rouffc@saic.com

Mike Hinchey
NASA GSFC

Code 581
michael.g.hinchey@nasa.gov

Walt Truszkowski, James Rash
NASA GSFC
Code 588

walter.f.truszkowski@nasa.gov
james.l.rash@nasa.gov

Abstract

Swarms of intelligent rovers and spacecraft are being
considered for a number of future NASA missions. These
missions will provide NASA scientist and explorers
greater flexibility and the chance to gather more science
than traditional single spacecraft missions. These swarms
of spacecraft are intended to operate for large periods of
time without contact with the Earth. To do this, they must
be highly autonomous, have autonomic properties and
utilize sophisticated artificial intelligence. The
Autonomous Nano Technology Swarm (ANTS) mission is
an example of one of the swarm type of missions NASA is
considering. This mission will explore the asteroid belt
using an insect colony analogy cataloguing the mass,
density, morphology, and chemical composition of the
asteroids, including any anomalous concentrations of
specific minerals. Verifying such a system would be a
huge task. This paper discusses ongoing work to develop
a formal method for verifying swarm and autonomic
systems.

Key Words: Swarms, autonomy, autonomic, asteroid,
spacecraft, formal methods.

1. Introduction

Swarm technologies, whereby federated systems of
spacecraft or rovers (of varying degrees of collective
intelligence) mimic the societal behaviors of swarms,
colonies, or flocks in nature (such as of bees, ants, or
geese) appear to offer great potential, and are becoming a
major focus for future NASA missions. These types of
missions provide greater flexibility and the chance to
gather more science than traditional single vehicle
missions [6]. The emergent and autonomic properties of
these missions make them powerful, but at the same time
more difficult to design and verify. These missions are
also more complex than previous types of missions, and
NASA (or anyone else) has little experience in
developing, verifying and validating them.

Bonabeau et al. [3] who has studied self-organization
in social insects stated ``that complex collective behaviors

may emerge from interactions among individuals that
exhibit simple behavior’’ and described emergent
behavior as ``a set of dynamical mechanisms whereby
structures appear at the global level of a system from
interactions among its lower-level components.’’ These
emergent behaviors are the sum of simple individual
behaviors, but when aggregated together form complex
and often unexpected behaviors. Intelligent swarms [2]
are where the individual members of the swarm have
independent intelligence. This makes verification more
difficult since swarm members are not homogeneous with
limited functionality and communications.

For swarm exploration, individual autonomy is not
crucial, but the mission cannot succeed unless each team
has all the autonomic properties of being [11]. There are
four such properties, which by their nature do not have
clear boundaries:

• self-configuring, able to adapt to changes in the
system;

• self-optimizing, able to improve performance;
• self-healing, able to recover from errors/damage;

and
• self-protecting,-able to anticipate and cure

intrusions.
The vision of Autonomic Computing as given in [11]
views an autonomic system as being robust across these
complementary dimensions.

Swarm-based systems will naturally bear all the
hallmarks of a complex system – perhaps millions of lines
of code, complex hardware-software interactions, real-
time behavior, the necessity for continual updates, and a
domain that is not fully understood. More importantly,
such a system can never be properly or exhaustively
tested. With the large number of parallel and distributed
swarm members, the state space is extremely large and is
impossible to test every pass through the state space.

Our conclusion is that having a formal model of these
swarm missions will significantly help us verify that these
systems can, and will, work properly. Formal methods
are proven techniques for verifying complex systems, but
due to the nature of swarm technologies, current methods
must be modified or new methods must be created to

 2

Figure 1: ANTS Mission Concept.

properly take into account the learning, intelligence and
emergent behavior of such systems.

2. ANTS Mission Overview

The Autonomous Nano-Technology Swarm (ANTS)
mission [6] will have swarms of autonomous pico-class
(approximately 1kg) spacecraft that will search the
asteroid belt for asteroids that have specific
characteristics (Figure 1). There will be approximately
1,000 spacecraft involved in the mission. Present
thinking has the swarm broken into three distinct classes:
workers, which will carry high-end miniature
instruments; others will be leaders that will be goal
oriented and direct the workers and still others will be
messengers that will route communications between
leaders, workers and Earth. To examine an asteroid, the
spacecraft will have to cooperate since they each only
have a single instrument on board. To do this they will
use an insect analogy of hierarchical social behavior were
some spacecraft are directing others. Sub-swarms will
exist that will act as teams that explore a particular
asteroid based on the asteroids properties and share
resources (instruments) between them.

To implement this mission a high degree of autonomy
is being planned, approaching total autonomy, and will
require autonomic properties. A heuristic approach is
being considered that provides for a social structure to the
spacecraft based on the above hierarchy. Artificial
intelligence technologies such as genetic algorithms,
neural nets, fuzzy logic and on-board planners are being
investigated to assist the mission to maintain a high level
of autonomy. Crucial to the mission will be the ability to
modify its operations autonomously to reflect the
changing nature of the mission and the distance and low
bandwidth communications back to Earth.

3. Approaches and Assurance

As mission software becomes increasingly more
complex, it also becomes more difficult to test and find
errors. This is especially true of highly parallel processes
and distributed computing, such as swarms and
autonomic systems. Race conditions in these systems can
rarely be found by inputting sample data and checking if
the results are correct. These types of errors are time-
based and only occur when processes send or receive data
at particular times or in a particular sequence or after
learning occurs. To find these errors, the software
processes involved have to be executed in all possible
combinations of states (state space) that the processes
could collectively be in. Because the state space is
exponential to the number of states, it becomes untestable
with a relatively small number of processes.
Traditionally, to get around the state explosion problem,
testers have artificially reduced the number of states of

the system and approximated the underlying software
using models.

Formal methods are proven approaches for assuring
the correct operation of complex interacting systems [7,
12, 13]. They are particularly useful for specifying
complex parallel and distributed systems where more than
one person was involved in the development. Once
written, a formal specification can be used to prove
properties of a system correct, check for particular types
of errors (e.g. race conditions), as well as used as input to
a model checker. Verifying emergent behavior is one
area that most formal methods have not addressed.

We surveyed formal methods techniques to determine
if there existed formal methods that would be suitable for
verifying swarm-based systems and their emergent
behavior. It was found that there are a number of formal
methods that support either the specification of
concurrency or algorithms [14]. Though there were a few
formal methods that have been used to specify swarm-
based systems, only two formal approaches had been
found that were used to analyze the emergent behavior of
swarms. Weighted Synchronous Calculus of
Communicating Systems (WSCCS), a process algebra,
was used by Tofts to model social insects [17], and to
analyze the non-linear aspects of social insects [16]. X-
Machines have been used to model cell biology [9] and
modifications have potential for specifying swarms.
Simulation approaches are being investigated to
determine emergent behavior. These approaches do not
predict emergent behavior from the model but model the
emergent behavior after the fact.

4. Specifications and Evaluation
In the initial evaluation of specification techniques for
swarm-based systems [15], specifications of the NASA
ANTS mission was done using Communicating
Sequential Processes (CSP) [8], WSCCS, Unity Logic [4]

 3

and X-Machines. Here we provide partial specifications
of ANTS using the four methods, an evaluation of these
methods and their potential for analyzing emergent
behavior. In each case, only enough of the ANTS mission
was specified to gather enough information to evaluate
the method for specifying swarm-based systems. The
following are the above specifications.

4.1. CSP
Each of the spacecraft has goals to fulfill their mission.
The emergent behavior of all these goals should equal the
goals of the mission. The following is the top-level
specification of the ANTS mission:

pk nj miWorker
MessengerLeaderANTS

goalswk

goalsmjgoalsligoals

≤≤≤≤≤≤•

=

1,1,1
||||

_ ,

_ ,_ ,

where m is the number of leader spacecraft, n the number
of messenger spacecraft and p the number of worker
spacecraft. The ANTS mission starts, or is initialized,
with a set of goals given to it by the principal investigator
and part of these goals are given to the leader (some of
these goals may not be given to the leader because the
goals are ground based or not applicable to the leader).
The leader spacecraft specification consists of two
processes:

modelgoalsi

ii

CEINTELLIGEN
LEADERLEADER_COMLeader

,,

{}, _||=

the communications process and the intelligence process.
The communication process, LEADER_COM, specifies
the behavior of the spacecraft as it relates to
communicating with the other spacecraft and Earth, and
specifies a protocol between the spacecraft. The second
process, LEADER_INTELLIGENCE, is the specification
of the intelligence of the leader. This is where the
deliberative and reactive parts of the intelligence are
implemented and the maintenance of the goals for the
leader is done. In addition to the goals, the
LEADER_INTELLIGENCE process also maintains the
models of the spacecraft and its environment and
specifies how it is modified during operations. The

following is an example portion of a top level
specification of the leader communication:

otherwise
AGEERROR_MESSRTH(msg) = EAif

AGEEARTH_MESSRKER(msg) = WOif
SAGEWORKER_MESSSENGER(msg) = ME

 ifMESSAGEMESSENGER_
ADER(msg) = LEifSAGELEADER_MES

msginleaderCOMLEADER

msgconvi

msgconvi

msgconvi

msgconvi

msgconvi

convi

,,

,,

,,

,,

,,

,

,sender
 ,sender

 ,sender

sender case

?._ →=

4.2. WSCCS
To model the ANTS Leader spacecraft, WSCCS
(Weighted Synchronous Calculus of Communicating
Systems), a process algebra, takes into account:

• The possible states (agents) of the Leader
• Actions each agent-state may perform that would

qualify them to be in those states
• The relative frequency and priority of each action

Agent states and view of priority (p) and frequency (f) on
the actions of the Leader as seen in Table 1. Based on
this, the states of the Leader can now be defined by
definition statements such as the following:

goces

goces

goces

goces

goces

goces

easoning

easoning

ingCommunicat

sinPr.nRemediatioProcessing:17

sinPr.RecoveryProcessing:16

sinPr.DiagnosisProcessing:16

sinPr.PredictionProcessing:17

sinPr.GenerationProcessing:17

sinPr.StorageSortingAndProcessing:17

R.eactiveReasoningR:50

R.eliberatveReasoningD:50

2

2

2

2

2

2

2

2

ω

ω

ω

ω

ω

ω

ω

ω

+

+

+

+

+

+

+

≡

This statement is saying that Leader, when in a
Communicating state, has the option (is allowed) to
perform any action from the set

n}RemediatioProcessing
,RecoveryProcessing,DiagnosisProcessing

,PredictionProcessing,GenerationProcessing
,StorageSortingAndProcessing

,eactiveReasoningR,eliberatveReasoningD{

 4

and that the Communicating Leader will perform
ReasoningDeliberatve with a probability of 25% and will
give that action the same priority as the others. The
second term in the statements tells us that the
Communicating Leader will perform ReasoningReactive
with the same 25% probability and priority of 2. The
symbol + in this notation denotes a choice between the
allowed actions, and the choice will be made based on the
frequencies and priorities of each allowable action.

The single Leader by itself shows the following
example emergent behavior. The Communicating Leader
will choose to transition to a Processing state with a
probability of 50% by choosing to process by one of the
sic available processing types. It will choose from the six
types with equal probability.

To study the emergent behavior of a swarm of Leaders
we begin by considering a swarm of only 2 Leader
spacecraft; called L1 and L2. Both leaders tick forward
by performing one action per time step. Thus the two
Leaders perform a composition of two actions, denoted

21 2*1 kk mm ωω , on each time step. When this happens,
the pair of leaders behaves according to the rules for
composition:

lkklkkklk nmnmmn ++++ == ωωωωω *)(*)(

kkkkkk nmnmmn ωωωωω *)(* == +

This gives the Leader pair their own set of relative
frequencies and priorities. Since there are two Leaders
and each has three states and 14 possible actions, the pair
of leaders has 9 possible state pairs and 196 possible
action compositions. The 2-Leader swarm will have a

much higher probability of having both leaders
communicating or reasoning, rather than processing.
Processing will be done by the swarm, but with much less
frequency than communicating or reasoning. These
features can be extrapolated to a swarm of n leaders as
follows.

Given a swarm of n Leader Spacecraft, the n-leader
swarm will tick forward in time by performing
simultaneous actions – one action per leader per time
step. Thus the n-leader swarm will perform (on each time
step) a composition of n actions, denoted with weight

nk
n

kk mmm ωωω *...** 21
21 . When this happens, the n-

leader swarm still must behave according to the rules for
composition seen before.

This gives the n-leader swarm its own set of relative
frequencies and priorities. Since there are n Leaders and
each has three states and 14 possible actions, the swarm
of n leaders has n3 possible state sets and n14 possible
action compositions. There are only two possible priority
values and four possible relative frequency values
available and thus we can narrow down that each priority
ik must be either 1 or 2 and each relative frequency

im must be either 1 (if the priority is 1) or one of 16, 17
or 50 (if the priority is 2). Thus the remaining options for
leaders in the swarm will include communicating,
reasoning, and processing (either by prediction or
recovery, or otherwise). Let commN be the number of
leaders in the swarm who choose to communicate (not in
error) on a given time step. Let reasonN be the number of
leaders in the swarm who choose to reason on that time
step. Let 16processN be the number of leaders in the swarm
who choose to process (by prediction or recovery) on that
time step. Lastly, let 17processN be the number of leaders
in the swarm who choose to process (by other means) on
that time step. Then, each action by each leader will have
priority 2 and relative frequency 16, 17 or 50. Thus, the
composition of their actions will have weight:

nNNNN

k
n

kk

processprocessreasoncomm

nmmm
2

21

)17)(16)(50(

*...**
1716

21

ω

ωωω
+

=

From this weighting, we can see that drastically higher
frequencies exist when larger numbers of the leaders in
the swarm choose to communicate or reason. Much lower
frequencies exist when larger numbers of leaders choose
to process. Thus the swarm will be communicating and
reasoning much more often than processing, although
processing will take place.

4.3. Unity Logic

To model the ANTS Leader spacecraft with Unity
Logic, we consider states of the Leader. In Unity Logic,

Table 1: Leader States and Actions

State Action f p
 Identity

SendMessageWorker 50 2
SendMessageLeader 50 2
SendMessageError 1 1
ReceiveMessageWorker 50 2
ReceiveMessageLeader 50 2

Commun-
icating

ReceiveMessageError 1 1
ReasoningDeliberatve 50 2

Reasoning
ReasoningReactive 50 2
ProcessingSortingAndStorage 17 2
ProcessingGeneration 17 2
ProcessingPrediction 17 2
ProcessingDiagnosis 16 2
ProcessingRecovery 16 2

Processing

ProcessingRemediation 17 2

 5

we will consider the states of the Leader, and the actions
taken to make the Leader be in those states, but the
notation will appear much closer to classical logic.
Predicates will be defined to represent the actions that
would put the Leader into its various states. Those
predicates then become statements which, if true, would
mean that the Leader had performed an action that put
itself into the corresponding state. The Leader program
would then be specified using assertions such as the
following for Communication:

[Communicating]ReasoningDeliberatve(Leader)[Reasoning]

[Communicating]ProcessingGeneration(Leader)[Processing]

Unity Logic then provides a logical syntax equivalent

to Propositional Logic for reasoning about these
predicates and the states they imply as well as for
defining specific mathematical, statistical and other
simple calculations to be performed.

4.4. X-Machines
To model the ANTS Leader spacecraft as an X-Machine
we must be able to see the Leader as a tuple:

{ }0,,,,,,, mstartFQOutputMemoryInputL Φ=
where the components of the tuple are defined as



























=

mediateer
DiagnoseedictGenerate

reSortAndSto
activeveDeliberati

errorleadermessengerwor

Input

Re,covRe
,,Pr,

,
,Re,

,,,ker,

Memory will be written as a tuple),(ModelGoalsm =
where Goals describes the goals of the mission and Model
describes the model of the universe maintained by the
Leader. The initial memory will be denoted by

),(00 ModelGoals . When the goals and/or model changes,
the new tuple will be denoted as),(lModesGoalm ′′=′ .













































=

mediationocessed
eryocessedgnosisocessedDia

edictionocessederationocessedGen
ringtingAndStoocessedSor

activelyasonedbartivelyasonedDeli
ageErrorceivedMess
ageLeaderceivedMess

erageMessengceivedMess
ageWorceivedMesseErrorSentMessag

eLeaderSentMessageMessengerSentMessag
eWorSentMessag

Output

RePr
,covRePr,Pr

,PrPr,Pr
,Pr

,ReRe,Re
,Re

,Re
,Re

ker,Re,
,,

ker,









=
gocesasoning

ingCommunicatStart
Q

sinPr,Re
,,

 is a set of
states.









=Φ
ocessason

geceiveMessaeSendMessag
Pr,Re

,Re,

 is a set of
(partial)
transition
functions
where each
transition
function
maps MemoryOutputInputMemory ×→× as in the
following:

ker),(ker),(eWorSentMessagmWorm ′=Φ
)Pr,(),(erationocessedGenmGeneratem ′=Φ

Then QQF →Φ×: is defined according to
definitions such as in Table 2.

5. Evaluation of Methods

CSP is very good at specifying the protocols between
and within the spacecraft and analyzing the result for race
conditions, which is very important in highly parallel
systems, such as swarms. From a CSP specification,
reasoning about the specification can be done to
determine race conditions as well as converted into a
model checking language for running on a model checker.

WSCCS also provides a process algebra that takes into
account the priorities and probabilities of actions
performed by the spacecraft. It also provides syntax and a
set of rules for predicting and specifying choices and
behaviors, as well as a congruence and syntax for
determining if two automata are equivalent. All of this in
hand, WSCCS can be used to specify the ANTS
spacecraft and to reason about and even predict the
behavior of one or more spacecraft. This robustness
affords WSCCS the greatest potential for specifying
emergent behavior in the ANTS swarm. What it lacks
towards that end is an ability to track the goals and model
of the ANTS mission in a memory. This may be achieved
by blending the WSCCS methods with the memory
aspects of X-Machines.

Unity Logic provides a logical syntax equivalent to
simple Propositional Logic for reasoning about predicates
and the states they imply as well as for defining specific
mathematical, statistical and other simple calculations to
be performed. However, it does not appear to be rich
enough to allow ease of specification and validation of
more abstract concepts such as mission goals. However, it

Table 2. Leader States and Transitions

Q Φ),(' Φ= QFQ
Start SendMessage Commun.
 ReceiveMessage Commun.
 Reason Reasoning
 Process Processing
Commun. SendMessage Commun.
 ReceiveMessage Commun.
 Reason Reasoning
 Process Processing
Reasoning SendMessage Commun.
 ReceiveMessage Commun.
 Reason Reasoning
 Process Processing
Processing SendMessage Commun.
 ReceiveMessage Commun.
 Reason Reasoning
 Process Processing

 6

may be good for specifying and validating the Reasoning
programming (as opposed to Reasoning process) portion
of the ANTS Leader spacecraft, when the need arises.

X-Machines allow for a memory to be kept and it
allows for transitions between states to be seen as
functions involving inputs and outputs. This allows us to
track the actions of the ANTS spacecraft as well as write
to memory any aspect of the goals and model. This ability
makes X-Machines highly effective for tracking and
affecting changes in the goals and model. However, X-
Machines do not provide any robust means for reasoning
about or predicting behaviors of one or more spacecraft,
beyond standard propositional logic.
6. Conclusion
An effective formal method must be able to predict the
emergent behavior of 1000 agents as a swarm as well as
the behavior of the individual agent. Crucial to the
mission will be autonomic properties and the ability to
modify operations autonomously to reflect the changing
nature of the mission. For this, the formal specification
will need to be able to track the goals of the mission as
they change and to modify the model of the universe as
new data comes in. The formal specification will also
need to allow for specification of the decision making
process to aid in the decision of which instruments will be
needed, at what location, with what goals, etc.

Once written, the formal specification must be able to
be used to prove properties of the system correct, check
for particular types of errors (e.g. race conditions), as well
as be used as input to a model checker. The formal
method must also be able to track the models of the
leaders and it must allow for decisions to be made as to
when the data collected has met the goals.

To accomplish the above, a blending of the above
methods seems to be the best approach for specifying
swarm-based systems (Figure 2). Blending the memory
and transition function aspects of X-Machines with the
priority and probability aspects of WSCCS and other
methods may produce a specification method that will
allow all the necessary aspects for specifying emergent
behavior in the ANTS mission and other swarm-based
systems. The merging of these formal methods is
currently being performed.

7. Acknowledgements
This work was supported by the NASA Office of Safety
and Mission Assurance (OSMA) Software Assurance
Research Program (SARP) and managed by the NASA
Independent Verification and Validation (IV&V) Facility.

8. References
[1] ANTS Mission Web Site. NASA Goddard Space Flight

Center. http://ants.gsfc.nasa.gov/

[2] Beni, G. and Want, J. Swarm Intelligence. In Proceedings
of the Seventh Annual Meeting of the Robotics Society of
Japan, pp 425-428, Tokyo, Japan, 1989, RSJ Press.

[3] Bonabeau, E., G. Theraulaz, et al. Self-organization in
Social Insects, Trends in Ecology and Evolution, 1997, vol.
12, pp. 188-193.

[4] Chandy, K. M. and Misra, J. Parallel Program Design: A
Foundation. Addison-Wesley. 1988.

[5] Curtis, S. A., J. Mica, J. Nuth, G. Marr, M. Rilee, and M.
Bhat. ANTS (Autonomous Nano-Technology Swarm): An
Artificial Intelligence Approach to Asteroid Belt Resource
Exploration. Int’l Astronautical Federation, Oct. 2000.

[6] Clark, P. E., Curtis, S. A. and Rilee, M. L. ANTS:
Applying a New Paradigm to Lunar and Planetary
Exploration. Solar System Remote Sensing Symposium,
Pittsburg, 2002.

[7] Hinchey, M. and Bowen, J. Industrial-Strength Formal
Methods in Practice. Springer. 1999.

[8] Hoare, C.A.R. Communicating Sequential Processes.
Communications of the ACM, 21(8):666-677, Aug., 1978.

[9] Holcombe, M. Mathematical models of cell biochemistry.
Technical Report CS-86-4. 1986. Dept of Computer
Science, Sheffield University, United Kingdom.

[10] Holzmann, H. J, Design and Validation of Computer
Protocols, Prentice Hall, Englewood Cliffs, NJ, 1991.

[11] Joseph, J. and Fellenstein, C. Grid Computing. IBM Press
2004.

[12] Nayak, P. Pandurang, et. al. 1999. Validating the DS1
Remote Agent Experiment. In Proceedings of the 5th
International Symposium on Artificial Intelligence,
Robotics and Automation in Space (iSAIRAS-99).

[13] Rouff, C., Rash, J., Hinchey, M. Experience Using Formal
Methods for Specifying a Multi-Agent System. Sixth IEEE
Int’l Conference on Engineering of Complex Computer
Systems (ICECCS 2000) September 11-15, 2000.

[14] Rouff, C., Vanderbilt, A., Truszkowski, W., Rash, J. and
Hinchey, M. Verification of NASA Emergent Systems.

is a set of (partial) transition functions
where each transition function maps









=Φ
ocessason

geceiveMessaeSendMessag
Pr,Re

,Re,

MemoryOutputInputMemory ×→×

is a set of (partial) transition functions
where each transition function maps









=Φ
ocessason

geceiveMessaeSendMessag
Pr,Re

,Re,

MemoryOutputInputMemory ×→×

goces

goces
goces
goces
goces

goces
easoning

easoning
ingCommunicateceive

ingCommunicateceive
ingCommunicateceive

ingCommunicat

ingCommunicat
ingCommunicatingCommunicat

sinPr.nRemediatioProcessing:17

sinPr.RecoveryProcessing:16
sinPr.DiagnosisProcessing:16
sinPr.PredictionProcessing:17
sinPr.GenerationProcessing:17

sinPr.StorageSortingAndProcessing:17
R.eactiveReasoningR:50

R.eliberatveReasoningD:50
.orMessageErrR:1

.derMessageLeaR:50
.kerMessageWorR:50

.eErrorSendMessag:1

.eLeaderSendMessag:50
.eWorkerSendMessag:50

2

2

2

2

2

2

2

2

1

2

2

1

2

2

ω

ω

ω

ω

ω

ω

ω

ω

ω

ω

ω

ω

ω

ω

+

+

+

+

+

+

+

+

+

+

+

+

+

≡

lkklkklk nmnmn +++ +==+ ωωωωω
kkkkk nmmnmn ωωωωω +=+=+)(

goces

goces
goces
goces
goces

goces
easoning

easoning
ingCommunicateceive

ingCommunicateceive
ingCommunicateceive

ingCommunicat

ingCommunicat
ingCommunicatingCommunicat

sinPr.nRemediatioProcessing:17

sinPr.RecoveryProcessing:16
sinPr.DiagnosisProcessing:16
sinPr.PredictionProcessing:17
sinPr.GenerationProcessing:17

sinPr.StorageSortingAndProcessing:17
R.eactiveReasoningR:50

R.eliberatveReasoningD:50
.orMessageErrR:1

.derMessageLeaR:50
.kerMessageWorR:50

.eErrorSendMessag:1

.eLeaderSendMessag:50
.eWorkerSendMessag:50

2

2

2

2

2

2

2

2

1

2

2

1

2

2

ω

ω

ω

ω

ω

ω

ω

ω

ω

ω

ω

ω

ω

ω

+

+

+

+

+

+

+

+

+

+

+

+

+

≡

lkklkklk nmnmn +++ +==+ ωωωωω
kkkkk nmmnmn ωωωωω +=+=+)(

otherwise

AGEERROR_MESS
RTH(msg) = EAif

AGEEARTH_MESS
RKER(msg) = WOif

SAGEWORKER_MES
SSENGER(msg) = ME if

MESSAGEMESSENGER_
ADER(msg) = LEif

SAGELEADER_MES
msginleaderCOMLEADER

msgconvi

msgconvi

msgconvi

msgconvi

msgconvi

convi

sender

sender

sender

sender

 case
?._

,,

,,

,,

,,

,,

, →=

otherwise

AGEERROR_MESS
RTH(msg) = EAif

AGEEARTH_MESS
RKER(msg) = WOif

SAGEWORKER_MES
SSENGER(msg) = ME if

MESSAGEMESSENGER_
ADER(msg) = LEif

SAGELEADER_MES
msginleaderCOMLEADER

msgconvi

msgconvi

msgconvi

msgconvi

msgconvi

convi

sender

sender

sender

sender

 case
?._

,,

,,

,,

,,

,,

, →=),,(' ingCommsTracklModesGoalmemory ′′=),,(' ingCommsTracklModesGoalmemory ′′=

217ProcessingRemediation

216ProcessingRecovery

216ProcessingDiagnosis

217ProcessingPrediction

217ProcessingGeneration

217ProcessingSortingAndStorage

Processing

250ReasoningReactive

250ReasoningDeliberatve
Reasoning

11ReceiveMessageError

250ReceiveMessageLeader

250ReceiveMessageWorker

11SendMessageError

250SendMessageLeader

250SendMessageWorker

Communicating

Identity

pfActions leading to the agent
stateAgent State

217ProcessingRemediation

216ProcessingRecovery

216ProcessingDiagnosis

217ProcessingPrediction

217ProcessingGeneration

217ProcessingSortingAndStorage

Processing

250ReasoningReactive

250ReasoningDeliberatve
Reasoning

11ReceiveMessageError

250ReceiveMessageLeader

250ReceiveMessageWorker

11SendMessageError

250SendMessageLeader

250SendMessageWorker

Communicating

Identity

pfActions leading to the agent
stateAgent State



















=

5.5.00
25.25.5.0
25.25.5.0
25.25.5.0

P

Communicating

Reasoning

Processing
Initial
state

0.5

0.5

0.5

1

0.25

0.25

0.25

0.25 Communicating

Reasoning

Processing
Initial
state

0.5

0.5

0.5

1

0.25

0.25

0.25

0.25



















=

5.5.00
25.25.5.0
25.25.5.0
25.25.5.0

P

Communicating

Reasoning

Processing
Initial
state

0.5

0.5

0.5

1

0.25

0.25

0.25

0.25 Communicating

Reasoning

Processing
Initial
state

0.5

0.5

0.5

1

0.25

0.25

0.25

0.25

[Processing] SendMessage (Leader, Worker) [Communicating]

[Reasoning] SendMessage (Leader,Worker)[Communicating]

[Communicating]ReasoningDeliberatve(Leader)[Reasoning]

[Processing] SendMessage (Leader, Worker) [Communicating]

[Reasoning] SendMessage (Leader,Worker)[Communicating]

[Communicating]ReasoningDeliberatve(Leader)[Reasoning]

Swarm Formal Method Model and Outline

Figure 2: Combined formal method.

 7

Ninth Int’l Conf. on Engin. of Complex Computer Systems
(ICECCS 2004), Florence, Italy, April 14-16, 2004.

[15] Rouff, C., Vanderbilt, A., Hinchey, M. Truszkowski, W.,
and Rash, J. Properties of a Formal Method for Prediction
of Emergent Behaviors in Swarm-based Systems. 2nd IEEE
International Conference on Software Engineering and
Formal Methods. Beijing, China, 26-30 September, 2004.

[16] Sumpter, D.J.T., Blanchard, G.B. and Broomhead, D.S.
Ants and Agents: A Process Algebra Approach to
Modelling Ant Colony Behaviour. Bulletin of
Mathematical Bilogy. 2001, 63, 951-980.

[17] Tofts, C. Describing social insect behaviour using process
algebra. Transactions on Social Computing Simulation.
1991. 227-283.

